Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue.
نویسندگان
چکیده
The general affinity of the sarcoplasmic reticulum (SR) Ca (2+)-ATPase was examined for three different classes of vanadium coordination complexes including a vanadium(V) compound, pyridine-2,6-dicarboxylatodioxovanadium(V) (PDC-V(V)), and two vanadium(IV) compounds, bis(maltolato)oxovanadium(IV) (BMOV), and an analogue of amavadine, bis( N-hydroxylamidoiminodiacetato)vanadium(IV) (HAIDA-V(IV)). The ability of vanadate to act either as a phosphate analogue or as a transition-state analogue with enzymes' catalysis phosphoryl group transfer suggests that vanadium coordination compounds may reveal mechanistic preferences in these classes of enzymes. Two of these compounds investigated, PDC-V(V) and BMOV, were hydrolytically and oxidatively reactive at neutral pH, and one, HAIDA-V(IV), does not hydrolyze, oxidize, or otherwise decompose to a measurable extent during the enzyme assay. The SR Ca (2+)-ATPase was inhibited by all three of these complexes. The relative order of inhibition was PDC-V(V) > BMOV > vanadate > HAIDA-V(IV), and the IC 50 values were 25, 40, 80, and 325 microM, respectively. Because the observed inhibition is more potent for PDC-V(V) and BMOV than that of oxovanadates, the inhibition cannot be explained by oxovanadate formation during enzyme assays. Furthermore, the hydrolytically and redox stable amavadine analogue HAIDA-V(IV) inhibited the Ca (2+)-ATPase less than oxovanadates. To gauge the importance of the lipid environment, studies of oxidized BMOV in microemulsions were performed and showed that this system remained in the aqueous pool even though PDC-V(V) is able to penetrate lipid interfaces. These findings suggest that the hydrolytic properties of these complexes may be important in the inhibition of the calcium pump. Our results show that two simple coordination complexes with known insulin enhancing effects can invoke a response in calcium homeostasis and the regulation of muscle contraction through the SR Ca (2+)-ATPase.
منابع مشابه
The binding of vanadium (V) oligoanions to sarcoplasmic reticulum.
The binding of monovanadate and decavanadate anions to sarcoplasmic reticulum vesicles was measured by equilibrium sedimentation. The affinity of vanadate binding and the molar amount of vanadium (V) bound at equilibrium is much greater with decavanadate than with monovanadate. The binding data can be rationalized in terms of one binding site per ATPase molecule for monovanadate and two sites p...
متن کاملActivation of Ca2+ uptake and inhibition of reversal of the sarcoplasmic reticulum Ca2+ pump by aromatic compounds.
The effects of aromatic compounds in sarcoplasmic reticulum Ca2+-ATPase were investigated. The solubility of the drugs in various organic solvents and water was measured. The ratio between the solubility in organic solvents and that in water (distribution coefficient) was used as an index of their hydrophobicity. The order found was triphenylphosphine greater than diphenylamine greater than 3-n...
متن کاملThe Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities
Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...
متن کاملThe phospholipid flippase activity of gastric vesicles.
We found that isolated gastric vesicles contain a novel Mg2+-ATP-dependent phospholipid translocation (flippase) activity. Fluorescence analogue of phosphatidylcholine, 2-(12-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3- phosphocholine, was ATP-dependently translocated from the outer (cytosolic) to inner (luminal) leaflet of the lipid membrane bilayer of hog ...
متن کاملNucleotide specificity of cardiac sarcoplasmic reticulum. Inhibition of GTPase activity by ATP analogue in fluorescein isothiocyanate-modified calcium ATPase.
Unlike skeletal muscle sarcoplasmic reticulum, canine cardiac sarcoplasmic reticulum hydrolyzes GTP in ways that are similar and different from ATP hydrolysis. Also, ATP and ATP analogues inhibit GTPase activity noncompetitively with a Ki compatible with the high affinity ATP-binding site (c.f. Tate, C.A., Bick, R.J., Blaylock, S., Youker, K., Scherer, N.M., and Entman, M.L. (1989) J. Biol. Che...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inorganic chemistry
دوره 47 13 شماره
صفحات -
تاریخ انتشار 2008